练习题︱基于今日头条开源数据(二)——两款Apriori算法实践

R︱精准营销 同时被 3 个专栏收录
25 篇文章 1 订阅
18 篇文章 0 订阅

Apriori算法是通过限制候选产生发现频繁项集。总的来说,Apriori算法其实效率并不高,大规模数据计算的时候,需要考虑性能问题。
code + data可见:mattzheng/AprioriDemo

盗图盗图:
这里写图片描述

在R语言里面有非常好的package,可见我之前的博客:
R语言实现关联规则与推荐算法(学习笔记)
该packages能够实现以下一些可视化:
这里写图片描述
这里写图片描述

但是好像Python里面没有这样封装比较好的库…搜刮了一下,发现很多人写了,但是没有可视化模块,不过先拿着用呗。
笔者参考这两位大神的作品:

当然也会结合今日头条数据来做,之前做过一个练习,可见我之前博客:
练习题︱基于今日头条开源数据的词共现、新热词发现、短语发现


一、Apriori关联算法一:asaini/Apriori

因为该大神写的时候用得py2,我现在习惯py3;同时对一些细节进行一些调整。主要以介绍案例为主。
整体来看,效率还是很不错的,要比第二款效率高。

1.1 主函数介绍

runApriori(inFile, minSupport, minConfidence)

输入的内容有三样:

  • inFile:数据集输入,迭代器
  • minSupport:最小支持度阈值,作者推荐:0.1-0.2之间
  • minConfidence:最小置信度阈值,作者推荐:0.5-0.7之间

输出内容两样:

  • items ,支持度表,形式为:(tuple, support),一个词的支持度、一对词的支持度【无指向】
  • rules ,置信度表,形式为((pretuple, posttuple), confidence),(起点词,终点词),置信度【有指向】

1.2 改编两函数:dataFromFile、transferDataFrame

为了更便于使用,同时笔者改编了一个函数 dataFromFile + 新写了一个函数 transferDataFrame。

dataFromFile(fname,extra = False)

作者函数中只能从外部读入,如果笔者要对数据集做点操作,就可以使用extra = True,当然只适用dataframe,可见下面的今日头条数据例子。

transferDataFrame(items, rules,removal = True)

items、rules计算出来之后,作者只是print出来,并没有形成正规的格式输出,这里写了一个变成dataframe的格式。可见下面例子的格式。
同时,这边的removal =True,是因为会出现:‘A->B’,‘B->A’的情况,这边True就是只保留一个。

1.3 作者提供的数据实践

作者的数据为,而且可以支持不对齐、不等长
这里写图片描述

inFile = dataFromFile('INTEGRATED-DATASET.csv',extra = False)
minSupport = 0.15
minConfidence = 0.6
items, rules = runApriori(inFile, minSupport, minConfidence)

# ------------ print函数 ------------
printResults(items, rules)

# ------------ dataframe------------ 
items_data,rules_data = transferDataFrame(items, rules)

这里的支持度、置信度都还挺高的,得出的结果:
items_data的支持度的表格,其中Len,代表词表中的词个数。
这里写图片描述
rules_data 的置信度表格,指向为word_x->word_y
这里写图片描述

1.4 今日头条二元组词条

今日头条的数据处理,主要参考上一篇练习题。然后把二元组的内容,截取前800个,放在此处。
这里写图片描述
其中第一列为共现频数,其他为共现词,在这里面不用第一列共现频数。

data = pd.read_csv('CoOccurrence_data_800.csv',header = None)
inFile = dataFromFile(data[[1,2]],extra = True)
data_iter = dataFromFile(data[[1,2]],extra = True)
#list(inFile)
minSupport = 0.0
minConfidence = 0.0

items, rules = runApriori(inFile, minSupport, minConfidence)
print('--------items number is: %s , rules number is : %s--------'%(len(items),len(rules)))

# ------------ print函数 ------------
printResults(items, rules)

# ------------ dataframe------------ 
items_data,rules_data = transferDataFrame(items, rules)

此时,因为词语与词语之间的关系很稀疏,支持度与置信度都不会高的,所以练习题中要把两个比例都设置为0比较好。
items_data的支持度的表格,其中Len,代表词表中的词个数。
这里写图片描述
rules_data 的置信度表格,指向为word_x->word_y
这里写图片描述

.


二、Apriori关联算法二:Pandas实现高效的Apriori算法

用Pandas写的,效率在生成频繁集的时候会爆炸,所以合理选择支持度很重要。
大神写的很服从中文环境,所以不用改啥,给赞!

2.1 官方案例

所使用的数据比较规则:
这里写图片描述

 # ------------ 官方 ------------
 d = pd.read_csv('apriori.txt', header=None, dtype = object)
 d = ToD(d)
 support = 0.06 #最小支持度
 confidence = 0.75 #最小置信度
 output = find_rule(d, support, confidence)
 output.to_excel('rules.xls')

大神已经整理好结果,可见:
这里写图片描述

2.2 今日头条数据

今日头条的数据处理,主要参考上一篇练习题。然后把二元组的内容,截取前800个,放在此处。

其中第一列为共现频数,其他为共现词,在这里面不用第一列共现频数。

# ------------自己 ------------
data = pd.read_csv('CoOccurrence_data_800.csv',header = None)
support = 0.002 #最小支持度
confidence = 0.0 #最小置信度
d = ToD(data[[1,2]])
output = find_rule(d, support, confidence)

因为词条之间非常稀疏,支持度与置信度需要设置非常小,如果support设置为0的话,又会超级慢,笔者实验的数据,支持度比较合适在0.002。
最终输出的结果如下:
这里写图片描述


3 如何解读lift/conf / support

在这里插入图片描述

  • 支持度:共同出现的频率,代表两个元素的多寡,这个图表明两个元素频率蛮高,算是热门元素
  • 置信度:条件概率,从图中可以看到,x->y是概率很高的,y->x却很低,可以理解为因果关系
  • 提升度:可以理解为相关性,常规<1,互斥;=1,不相关;>3,相关

这个图,可以理解到,loose_pwd这个类目数量级比较大,应该是热门品,而rouge_light量级比较小,应该是loose_pwd带动了rouge_light,只不过是顺带的

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值