笔记︱虚拟变量回归=差异显著(方差分析)+差异量化(系数值)

R︱精准营销 专栏收录该内容
25 篇文章 1 订阅


      虚拟变量作为自变量,放在回归方程中在教科书里面讲的都很多,笔者以前在学习的时候觉得虚拟变量较之方差分析,还有更多惊喜。谢宇老师的《回归分析》书中对虚拟变量做了高度的总结与归纳。


      之后在文章末提到一个应用:

      应用一:使用dummy包设置哑变量


      虚拟变量回归只能做其他类和参照类的比较。

       同时,虚拟变量+交互项,效果更是惊人,关于交互项可以参考: 

笔记︱横截面回归模型中的两大方向(交互效应+随机性)


——————————————————————————————————————————


1、虚拟变量的设置


虚拟变量(哑变量)是一种对名义变量进行分类、并重编码。

比如性别  x1=1/0,1就代表为男生,0为女生。

如何把虚拟变量放入方程中,可是一门大学问。


如果是名义变量转化过来的要注意截距项的有无、共线性问题:

名义变量转化的一个例子就是大学四年级。那么把四个年级分为四个虚拟变量,多了四个变量:

D1=1,是大一,否则为0;   D2=1,是大二,否则为0;
D3=1,是大三,否则为0;   D4=1,是大三,否则为0。



如果四个都放进去+截距项=完全多重共线性;正确的做法是:


放三个变量(D1D2D3)+截距项,Y~b0+b1D1+b2D2+b3D3;

或者四个变量+不加截距项,Y~b1D1+b2D2+b3D3+b4D4。


——————————————————————————————————————————


2、虚拟变量回归中的参照组的选择与截距项的含义——差异量化


Y~b0+b1D1+b2D2+b3D3    这个中D4就作为参照组,如果是大学四年就是其他变量跟四年级比较。

若Y代表收入,

截距项b0代表D4,四年级的平均人均收入,如果案例是100个学生,就代表四年级每个人的平均收入;

b1就代表D1-D4的平均收入,代表一年级与四年级的人均平均收入的差值,bo+b1代表一年级同学平均收入状况。

b1将两个年级的差异进行量化。


同时b1的T检验,代表着,D1-D4,一年级与四年级平均值差异的显著性。跟方差分析差不多。


——————————————————————————————————————————


3、虚拟变量*连续变量结合——更多惊喜


sex代表性别,senior代表高中与否,exp代表工作年限,y变量为收入。


可以综合来看,不同类别下的工作年限的现状。

如果有交互项,交互项的系数与显著性会更有趣。反映了连续变量某状态差别的显著性。




——————————————————————————————————————————


以下是一张虚拟变量回归对比方差分析的区别图:




——————————————————————————————————


应用一:使用dummy包设置哑变量


install.packages("dummies")
library(dummies)
students <- read.csv("data-conversion.csv")

students.new <- dummy.data.frame(students, sep = ".")
names(students.new)

dummy(students$State, sep = ".")

students.new1 <- dummy.data.frame(students,
                  names = c("State","Gender") , sep = ".")


本应用来自与经管之家一个坛友所著:http://bbs.pinggu.org/thread-4938771-1-1.html




  • 3
    点赞
  • 0
    评论
  • 22
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值