智能营销增益(Uplift Modeling)模型——pylift库的使用(二)

机器学习︱R+python 同时被 2 个专栏收录
75 篇文章 6 订阅
25 篇文章 1 订阅

上一篇【智能营销增益(Uplift Modeling)模型——模型介绍(一)】仔细介绍了理论部分,本篇主要是算法库pylift的介绍。
【营销增益模型实战-Uplift Model原理及应用】一文中提到:

  • 目前的算法包虽然可以直接使用,但速度慢,定制性差

由于Uplift模型还未被广泛使用,业界对于该技术的定义混乱,每个领域甚至每个公司都会有自己的魔改版本,甚至连该方法的名称都没有得到统一,举几个常见的例子:

  • Estimating heterogeneous treatment effects (Example)
  • Incremental response modeling (Example)
  • Net scoring (Example)
  • True response modeling (Example)

推荐使用的Packages:



1 pylift 模型介绍

参考文章:一文读懂uplift model 还有官网文档
主要源自: Transformed Outcome (Athey 2016)

Uplift models需要每一个人的两方面信息:是否给予treatment,产出label。理想情况下,我们可以得到一些个体在随机分配到实验组(treat group)和对照组(control group)后的数据,基于他们对于treatment的反应,outcome label可以被转化为下面这个矩阵(Athey and Imbens 2016)(实际情况中可以有其他的正负样本划分方法):

在这里插入图片描述

可能在第一眼的时候觉得这个目标矩阵不太靠谱,像拍脑袋的结果,为啥没有买的给不给treatment都是0?
为什么给了treatment买了就是2?
看起来非常不直观,但是是有道理在里面的,假如将一群人随机分为控制组和对照组,最后得到的平均值矩阵就是这群人的lift。

为了说明这个问题,考虑有一群人,人数为2n,其中n个给了treatment t,另外n个不给作为对照组。为了简单起见我们将i =1 ,…, n为treatment组,i =n+1 ,…, 2n为控制对照组。对于每一个用户,原始的outcomes和转换后的分别为 Yi和Zi ,那么对于这群人,对于购买行为的lift为:
在这里插入图片描述
也就是说,转化后的outcome取决于前一个group的lift,这个优雅的转换大大简化了lift问题,我们可以直接对z建立回归模型,我们就可以得到对于基于特征x表征的用户的uplift:
在这里插入图片描述


2 pylift安装与Quick start

2.1 pylift的安装

Pylift是uplift建模的Python工具包。Pylift在sklearn的基础上针对uplift modeling对各模型做了一些优化,同时集成了一套uplift评价指标体系。所以Pylift内核还是sklearn,在sklearn外面封装了一套API,针对树模型做了uplift优化,可以通过Pylift实现直接的uplift modeling.

官方文档:readthedocs
github地址:wayfair/pylift

最便捷的安装方式:

pip install pylift

2.2 pylift的Quick start

参考:【营销增益模型实战-Uplift Model原理及应用】

from pylift import TransformedOutcome
up = TransformedOutcome(df1, col_treatment='Treatment', col_outcome='Converted')

up.randomized_search() # 对所有参数grid search,十分耗时,使用时注意限制参数searching的数量
up.fit(**up.rand_search_.best_params_)

up.plot(plot_type='aqini', show_theoretical_max=True) # 绘制aqini曲线
print(up.test_results_.Q_aqini)

所有模型的实现都通过类TransformedOutcome操作,通过传参来指定模型。
默认的模型是XGBRegressor. 如果使用其他模型,通过参数sklearn_model指定,如下:

up = TransformedOutcome(df, col_treatment='Treatment', col_outcome='Converted', sklearn_model=RandomForestRegressor)

参数col_treatment是指数据集df中区分是否是treatment group的字段,通过0/1二值区分,
col_outcome相当于label字段,如有转化是1,无转化是0.
Pylift另一个方便之处是提供了计算uplift评价指标的函数。如果是使用TransformedOutcome生成的结果,直接输入up.plot(plot_type='qini')即可绘制qini曲线。如果是自己的数据,可以通过下述方式来绘制曲线:

from pylift.eval import UpliftEval
upev = UpliftEval(treatment, outcome, predictions)
upev.plot(plot_type='aqini')

其中treatment标识是否treatment group,list格式;
outcome相当于label,list格式;
predictions是预测的uplift score分数,
注意这是uplift score,如果不是uplift score需要自己先将uplift score计算好。
上一小节模型评估中的图均是通过UpliftEval绘制的。

plot_type参数是绘制曲线的类型,可以绘制以下六种曲线:

  • qini:qini曲线
  • aqini:修正后的qini曲线,更适应treatment group和control group数据不均衡的数据
  • cuplift:累积uplift曲线
  • uplift:uplift曲线,不累积
  • cgains:累积gain曲线
  • balance:每个百分比下,实验组目标人数除以所有人数

通过以下方式计算曲线面积:

upev.Q_aqini # aqini曲线与random line之间的面积
upev.q1_qini # qini曲线与理想曲线之间的面积
upev.q2_cgains # cgains曲线与最佳实践曲线之间的面积

Pylift用于实验很方便,但因为还是基于sklearn,当达到千万量级的数据量时,还是需要考虑分布式。


3 案例一:完整demo案例

来自官方github之中:simulated_data/sample.ipynb

3.1 生成模拟数据

import numpy as np, matplotlib as mpl, matplotlib.pyplot as plt, pandas as pd
from pylift import TransformedOutcome
from pylift.generate_data import dgp
# Generate some data.
df = dgp(N=10000, discrete_outcome=True)
df

数据样式:
在这里插入图片描述
treatment是指数据集df中区分是否是treatment group的字段,通过0/1二值区分,
outcome相当于label字段,如有转化是1,无转化是0.

3.2 初始化模型

# Specify your dataframe, treatment column, and outcome column.
up = TransformedOutcome(df, col_treatment='Treatment', col_outcome='Outcome', stratify=df['Treatment'])

为了建立建模的框架,只需实例化TransformedOutcome对象,并指定实验组(treatment)和对照组(outcome)(必须输入:pandas.DataFrame)。

还有一些可选参数,可以自由调节。

其中,stratify参数比较重要,因为其会直接传递给sklearn.model_select .train_test_split用来作为训练集/验证集的拆分

3.3 数据EDA 与 特征选择

增益模型的EDA是比较有技巧性的,该库作者已经融合了一些方法进来进行特征选择和检查模型数据。

其中,NIV(net information value) 和 NWOE(net weight of evidence) 两个指标会被计算,两个指标的概念可参考这篇博客:Data Exploration with Weight of Evidence and Information Value in R

来看看这篇博客描述这两个指标:

  • NIV measures the strength of a given variable
  • while NWOE describes the pattern of the relationship.

Specifically, the higher the value of NIV, the better the given variable is at separating self-selectors – i.e., people who are self-motivated to buy – and persuadables that need to be motivated.

具体来说,NIV的值越高,给到的特征越能辨别出自然转化(self-selectors)与营销敏感人群(persuadables)
在这里插入图片描述

# This function randomly shuffles your training data set and calculates net information value.
up.NIV()

在这里插入图片描述

up.NWOE(feats_to_use=[0])

在这里插入图片描述

3.4 超参数优化与模型拟合

up.randomized_search(n_iter=20, n_jobs=10, random_state=1)
up.fit(**up.rand_search_.best_params_)

在这里插入图片描述

3.5 模型评估

up.plot()

在这里插入图片描述
好的曲线,是均匀分布的;

一个陡峭、不均匀的曲线代表可能存在非常重要的特征,影响着实验组、控制组,需要找到并纠正这样的特征

3.6 通过误差曲线提高模型

绘制误差曲线可以有效地帮助了解预测模型的实际情况。

方法一:up.shuffle_fit实现

通过不断shuffle训练集与验证集,使用相同的超参数,然后把几个模型的结果绘制到同一个qini 图中

up.shuffle_fit(params=up.rand_search_.best_params_, nthread=30, iterations=5)
up.plot(show_shuffle_fits=True)

在这里插入图片描述

方法二:up.noise_fit实现
随机扰乱预测集内容,来看会造成如何的误差

up.noise_fit()
up.plot(show_noise_fits=True)

在这里插入图片描述

3.7 用自定义目标函数

特别是对于xgboost,更改目标函数可能会很有用。

例如,如果您喜欢以相等的概率去区分四种人:营销敏感性、反作用人群、自然购买人群、无所谓人群,可以考虑在TransformedOutcome环节使用:MAE

def fair_obj(dtrain, preds):
    """y = c * abs(x) - c * np.log(abs(abs(x) + c))"""
    x = preds - dtrain
    c = 1
    den = abs(x) + c
    treat = dtrain > 0
    cont = dtrain < 0
    
    grad = c*x / den
    hess = c*c / den ** 2
    return grad, hess

def huber_approx_obj(dtrain, preds):
    d = dtrain - preds  #remove .get_labels() for sklearn
    h = 1  #h is delta in the graphic
    scale = 1 + (d / h) ** 2
    scale_sqrt = np.sqrt(scale)
    grad = d / scale_sqrt
    hess = 1 / scale / scale_sqrt
    return grad, hess

def log_cosh_obj(dtrain, preds):
    x = preds - dtrain
    grad = np.tanh(x)
    hess = 1 / np.cosh(x)**2
    return grad, hess


# Specify your dataframe, treatment column, and outcome column.
upnew = TransformedOutcome(df, col_treatment='Treatment', col_outcome='Outcome', stratify=df['Treatment'], scoring_method='aqini', scoring_cutoff=0.4)

# Using MAE as the objective.
from xgboost import XGBRegressor
upnew.randomized_search_params['estimator'] = XGBRegressor(objective=log_cosh_obj, nthread=1)
upnew.randomized_search(n_iter=10, verbose=3, n_jobs=1)

upnew.fit(nthread=50, **upnew.rand_search_.best_params_, objective=log_cosh_obj)
upnew.plot(label='New objective', n_bins=30)

在这里插入图片描述
一般来说,私自调整自定义目标函数效果不好,但是这样的调整行为一定程度纠正:不均衡的处理/控制

3.8 切换不同的模型

from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
up1 = TransformedOutcome(df, col_treatment='Treatment', col_outcome='Outcome', stratify=df['Treatment'],
                        sklearn_model=RandomForestRegressor)
# RandomizedSearchCV.
up1.randomized_search(param_distributions={'max_depth': range(1,100), 'min_samples_split': range(1,1000)}, n_iter=10, n_jobs=10)
up1.fit(**up1.rand_search_.best_params_)
up1.plot()


在这里插入图片描述


4 案例二:Lalonde_sample

一个完整案例:Lalonde/Lalonde_sample.ipynb

%reload_ext autoreload
%autoreload 2
%matplotlib inline

import numpy as np, matplotlib as mpl, matplotlib.pyplot as plt, pandas as pd
from pylift import TransformedOutcome

import pandas as pd
pd.options.display.max_rows = 12

#1  载入数据
cols = ['treat', 'age', 'educ', 'black', 'hisp', 'married', 'nodegr','re74','re75','re78']
control_df = pd.read_csv('http://www.nber.org/~rdehejia/data/nswre74_control.txt', sep='\s+', header = None, names = cols)
treated_df = pd.read_csv('http://www.nber.org/~rdehejia/data/nswre74_treated.txt', sep='\s+', header = None, names = cols)
lalonde_df = pd.concat([control_df, treated_df], ignore_index=True)
lalonde_df['u74'] = np.where(lalonde_df['re74'] == 0, 1.0, 0.0)
lalonde_df['u75'] = np.where(lalonde_df['re75'] == 0, 1.0, 0.0)

#2  清洗数据
df = lalonde_df[['nodegr', 'black', 'hisp', 'age', 'educ', 'married', 'u74', 'u75', 'treat', 're78']].copy()
df.rename(columns={'treat':'Treatment', 're78':'Outcome'}, inplace=True)
df['Outcome'] = np.where(df['Outcome'] > 0, 1.0, 0.0)

# 3 Treatment and Outcome的交叉统计
pd.crosstab(df['Outcome'], df['Treatment'], margins = True)

# 4 建模
up = TransformedOutcome(df, col_treatment='Treatment', col_outcome='Outcome', stratify=df['Treatment'])
up.randomized_search(n_iter=20, n_jobs=10, random_state=1)
up.shuffle_fit(params=up.rand_search_.best_params_, nthread=30, iterations=5)
up.plot(show_shuffle_fits=True)


在这里插入图片描述


5 pylift 使用介绍

5.1 pylift一些重要属性

一些TransformedOutcome之后,up之中重要属性:

up.randomized_search_params # Parameters that are used in `up.randomized_search()`
up.grid_search_params       # Parameters that are used in `up.grid_search()`


up.transform                # Outcome transform function.
up.untransform              # Reverse of outcome transform function.

# Data (`y` in any of these can be replaced with `tc` for treatment or `x`).
up.transformed_y_train_pred  # The predicted uplift.
up.transformed_y_train  # The transformed outcome.
up.y_train
up.y_test
up.y                    # All the `y` data.
up.df
up.df_train
up.df_test

# Once a model has been created...
up.model
up.model_final
up.Q_cgains # 'aqini' or 'qini' can be used in place of 'cgains'
up.q1_cgains
up.q2_cgains

UpliftEval之后评估曲线信息的重要属性:

upev.PLOTTYPE_x  # percentile
upev.PLOTTYPE_y

PLOTTYPE可以用以下任意一种代替:qiniaqinicgainscupliftbalanceuplift。由于up.test_results_up.train_results_UpliftEval类对象,因此也可以按上面所示类似地对其进行访问。

还可以提取理论上的最大曲线:

# Overfitting theoretical maximal qini curve.
upev.qini_max_x  # percentile
upev.qini_max_y

# "Practical" max curve.
upev.qini_pmax_x
upev.qini_pmax_y

# No sleeping dogs curve.
upev.qini_nosdmax_x
upev.qini_nosdmax_y

向上
up.train_results_可以用来绘制训练数据上的qini性能

5.2 TransformedOutcome类

参考:Usage: modeling

up = TransformedOutcome(df, col_treatment='Treatment', col_outcome='Converted')

参数col_treatment是指数据集df中区分是否是treatment group的字段,通过0/1二值区分,
col_outcome相当于label字段,如有转化是1,无转化是0.
其中,stratify参数比较重要,因为其会直接传递给sklearn.model_select .train_test_split用来作为训练集/验证集的拆分

实例化步骤完成了几件事:

  • 定义转换函数并转换结果
  • 使用train_test_split分割数据
  • 设置一个随机状态
  • 定义一个untransform函数并使用它来定义一个用于超参数调优的评分函数
  • 定义一些默认的超参数。

5.3 up.fit类

RandomizedSearchCV(), GridSearchCV(), 或者Regressor() 都可以传导给: up.randomized_search, up.grid_search, 或者up.fit

up.fit(max_depth=2, nthread=-1)

举个换模型的例子:

up = TransformedOutcome(df, col_treatment='Test', col_outcome='Converted', sklearn_model=RandomForestRegressor)

grid_search_params = {
    'estimator': RandomForestRegressor(),
    'param_grid': {'min_samples_split': [2,3,5,10,30,100,300,1000,3000,10000]},
    'verbose': True,
    'n_jobs': 35,
}
up.grid_search(**grid_search_params)

当然,肯定更倾向于使用xgboost,因为它往往能快速提供良好的结果,同时还允许选择自定义目标函数。
这种可扩展性允许在每个叶子中考虑到P(W=1)的目标函数的可能性。

5.4 模型保存

跟sklearn一样,self.model_final.to_pickle(PATH)


参考文献
1 【营销增益模型实战-Uplift Model原理及应用】
2 Pylift: A Fast Python Package for Uplift Modeling

  • 2
    点赞
  • 2
    评论
  • 8
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值