推荐 | 微软SAR近邻协同过滤算法相关问题(三)

个性化推荐 同时被 2 个专栏收录
18 篇文章 0 订阅

遇到的问题贴…持续追加…

参考相关帖:
推荐 | 微软SAR近邻协同过滤算法解析(一)
推荐 | 微软SAR近邻协同过滤算法拆解(二)
练习题︱ python 协同过滤ALS模型实现:商品推荐 + 用户人群放大


1 问题一:模型预测之后Prediction一直为0

模型预测之后Prediction一直为0,同时发现model.item_similarity对角阵只有1,如下:

array([[1, 0, 0, ..., 0, 0, 0],
       [0, 1, 0, ..., 0, 0, 0],
       [0, 0, 1, ..., 0, 0, 0],
       ...,
       [0, 0, 0, ..., 1, 0, 0],
       [0, 0, 0, ..., 0, 1, 0],
       [0, 0, 0, ..., 0, 0, 1]], dtype=int64)

这个原因报错是:
sar_singlenode.py的291行:

self.item_similarity = jaccard(item_cooccurrence).astype(
    df[self.col_rating].dtype
)

这里item_cooccurrence的共现 C 矩 阵 C矩阵 C格式修改的时候的问题,是由这里的df决定,df => 训练数据集

在官方案例中rating都是float,笔者自己数据run的时候,调整为整数了。
所以,之后的数据rating列一定要改成float形式。
在这里插入图片描述

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值